1998-2022 ChinaKaoyan.com Network Studio. All Rights Reserved. 沪ICP备12018245号
我们可以根据考试的一些要求,还有历年考试真题的情况,咱们可以看一下历年考试的重难点。
咱们看高等数学部分,高等数学部分第一部分函数、极限连续这一块,重点要求掌握两个重要极限,未定式的极限、等价无穷小代换,这样一些东西,还有一些极限存在性问题,间断点的类型,这些东西在历年的考察中都比较高,而我上课的时候一直给大家强调,考极限的话,主要考的是洛必达法则加等价无穷小代换,特别针对数三的同学,这儿可能出大题。
第二部分是一元函数微分学,这块大家主要处理这几个关系,连续性,可导性和可微性的关系,掌握各种函数的求导方法。比如隐函数求导,参数方程求导等等这一类的,还有注意一元函数的应用问题,这也是历年考试的一个重点。数三的同学这儿结合经济类的一些试题进行考察。
一元函数微分学涉及面非常广,题型比较多,而且这一部分还有一个比较重点的内容,就是出证明题。咱们知道中值定理是历年经常考的一个考点,所用的主要方式就是构造辅助函数的方法进行证明。当然,这里还包含一部分等式和不等式的证明,零点问题,以及极值和凹凸性。
多元函数微分学,这一块内容实际上也是按照一元函数微分学的形式进行考察的,比如咱们求偏导数,先固定一个变量,给另一个变量求导数,归根到底还是考察一元函数微分学。对多元函数微分学,大家还有一个内容要掌握,连续性、偏导性和可微性,特别是抽象函数求二阶导数和二阶混合偏导这一类的题。
当然,还有一个问题,多元函数微分学的应用,主要牵扯两方面,一个是条件极值,一个是最值问题。这两块。
积分学包含两块,也就是一元函数积分学和多元函数积分学,对于一元函数积分学一个是不定积分和定积分的计算,对不定积分一定要非常熟练掌握基本运算,对于定积分除了掌握用不定积分计算的方式,还要注意用定积分的性质,比如定积分的奇偶性,周期性,单调性等等。
还有一块,定积分应用,主要考察面积问题,体积问题,或者说这块和微积分的结合等等。对于数一的同学来说,咱们还牵扯到一块,三重积分,曲线和曲面积分这两块,对于三重积分来说,大家主要掌握一些基本的,比如对球体、锥体、圆柱的积分,对于曲线和曲面积分主要掌握格林公式和高斯公式,利用格林公式把第二类曲线积分转化成二重积分,利用高斯公式把曲面积分转化成三重积分进行运算,这里有一个比较常考的知识点,曲线积分与路径无关,这个要作为一个主要的知识点进行掌握。
第四部分,就是微分方程,微分方程有两个重点,一个是一元线性微分方程,第二个是二阶常系数齐次/非齐次线性微分方程,对第一部分,大家掌握九种小类型,针对每一种小类型有不同的解题方式,针对每个不同的方程,套用不同的公式就行了。对于二阶常系数线性微分方程大家一定要理解解的结构。另一块对于非齐次的方程来说,大家要注意它和特征方程的联系,有齐次为方程可以求它的通解,当然给出的通解大家也要写出它的特征方程,这个变化是咱们这几年的一个趋势。这一类问题就是逆问题。
对于二阶常系数非齐次的线性方程大家要分类掌握。当然,这一块对于数三的同学来说,还有一个差分方程的问题,差分方程不作为咱们的一个重点,而且提醒大家一下,学习的时候要注意,差分方程的解题方式和微方程是相似的,学习的时候要注意这一点。
第五个,级数问题,主要针对数一和数三,有两个重点,一个是常数项级数的性质,包括敛散性。
第二块,牵扯到幂级数,大家要熟练掌握幂级数的收敛区间的计算,收敛半径与和函数,幂级数展开的问题,要掌握一个熟练的方法来进行计算。对于幂级数求和函数它可能直接给咱们一个幂级数求它的和函数或者给出一个常数项级数让咱们求它的和,要转化成适当的幂级数来进行求和。
关于线性代数这一块,有这样几个重点的内容,一个是逆矩阵和矩阵的秩。第二个,向量的线性相关性和向量的线性表示。向量组合的相关性,这一块极有可能考的类似于计算的证明题。比如让咱们证明几个向量线性无关。第三块是方程组的解的讨论,其中还包括有待定参数的解的讨论,这块的问题,往年也考得比较多。
第四块特征值和特征向量的性质,以及矩阵的对角化。
第五块,正定二次型的判断。大家在学线代的时候,还要注意一个方向,就是线性代数各个章节的连贯性是比较强的,我们在复习总结的时候,特别是后期,对于这一块内容要自己有一个总结,然后还可以看一看比如咱们的复习全书或者复习指南这之类的书,在脑海中对线性参数的知识点要形成一个知识性框架。
概率统计这块(数二不考),概率统计要注重这几块内容,一个是概率的性质与概率的公式,这一块要求咱们非常熟练的掌握,比方说加法公式,减法公式,乘法公式,全概率公式和Bayes公式,这块要非常熟悉的掌握。还有一部分,古典概率和几何概率,这块大家掌握中等难度的题就可以了。
第二块,一维随机变量函数的分布,这个要重点掌握连续性变量的这一块。这里面有个难点,一维随机变量函数这是一个难点,求一元随机变量函数的分布有两种方式,一个是分布函数法,这是最基本要掌握的。另外是公式法,公式法相对比较便捷,但是应用范围有一定的局限性。
第三块,多维随机变量的联合分布和边缘分布还有条件分布,多维随机变量的独立性,这块是考试的重点,当然也是一个难点。这块还有一个问题要求大家掌握的,随机变量的和函数和最值函数的分布。
第四块,随机变量的数字特征,这块很重要,要记住一维随机变量的数字特征都要记熟,数字特征很少单独性考察,往往和前面的一维随机变量函数和多维随机变量函数和第六章的数理统计结合进行考察。特别针对数一的同学来说,考察矩估计和最大似然估计的时候会考察无偏性。
第五块,参数估计这一点是咱们经常出大题的地方,这一块对咱们数一,数二,数三的同学,包含两块知识点,一个是矩估计,一个是最大似然估计,这两个集中出大题。数一的同学,咱们特别强调一点,考这个矩估计或者最大似然估计,极有可能结合无偏性或者有效性进行考察。
来源未注明“中国考研网”的资讯、文章等均为转载,本网站转载出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性,如涉及版权问题,请联系本站管理员予以更改或删除。如其他媒体、网站或个人从本网站下载使用,必须保留本网站注明的"稿件来源",并自负版权等法律责任。
来源注明“中国考研网”的文章,若需转载请联系管理员获得相应许可。
联系方式:chinakaoyankefu@163.com
扫码关注
了解考研最新消息