¶àάʵ·ÖÎö µÚ2¾í

  • ËùÊô·ÖÀࣺ
    ¸ßµÈԺУÀí..
  • ×÷Õߣº
    £¨ºÉ£©¶Å˹ÌØÂíÌØ Öø
  • ³ö°æÉ磺
    ÊÀ½çͼÊé³ö°æ¹«Ë¾
  • ISBN£º9787510005183
  • ³ö°æÈÕÆÚ£º2009-8-1
  • Ô­¼Û£º
    £¤49.00Ôª
    ÏÖ¼Û£º£¤39.20Ôª
  • ±¾ÊéÐÅÏ¢ÓɺÏ×÷ÍøÕ¾Ìṩ£¬ÇëÇ°ÍùÒÔÏÂÍøÕ¾¹ºÂò£º

    ¾©¶«É̳Ç

    ¡¡

    µ±µ±Íø

ͼÊé¼ò½é

Volume ¢ò
Preface
Acknowledgments
Introduction
6 Integration
6.1 Rectangles
6.2 Riemann integrability
6.3 Jordan measurability
6.4 Successive integration
6.5 Examples of successive integration
6.6 Change of Variables Theorem: formulation and examples
6.7 Partitions of unity
6.8 Approximation of Riemann integrable functions
6.9 Proof of Change of Variables Theorem
6.10 Absolute Riemann integrability
6.11 Application of integration: Fourier transformation
6.12 Dominated convergence
6.13 Appendix: two other proofs of Change of Variables Theorem
¡¡7 Integration over Submanifolds
7.1 Densities and integration with respect to density
7.2 Absolute Riemann integrability with respect to density
7.3 Euclidean d-dimensional density
7.4 Examples of Euclidean densities
7.5 Open sets at one side of their boundary
7.6 Integration of a total derivative
7.7 Generalizations of the preceding theorem
7.8 Gauss' Divergence Theorem
7.9 Applications of Gauss' Divergence Theorem
8 Oriented Integration
8.1 Line integrals and properties of vector fields
8.2 Antidifl'erentiation
8.3 Green's and Cauchy's Integral Theorems
8.4 Stokes' Integral Theorem
8.5 Applications of Stokes' Integral Theorem
8.6 Apotheosis: differential forms and Stokes' Theorem
8.7 Properties of differential forms
8.8 Applications of differential forms
8.9 Homotopy Lemma
8.10 Poincard's Lemma
8.11 Degree of mapping
¡¡Exercises
Exercises for Chapter 6
Exercises for Chapter 7
Exercises for Chapter 8
¡¡Notation
¡¡Index
Volume ¢ñ
Preface
Acknowledgments
Introduction
¡¡1 Continuity
1.1 Inner product and norm
1.2 Open and closed sets
1.3 Limits and continuous mappings
1.4 Composition of mappings
1.5 Homeomorphisms
1.6 Completeness
1.7 Contractions
1.8 Compactness and uniform continuity
1.9 Connectedness
¡¡2 Differentiation
2.1 Linear mappings
2.2 Differentiahle mappings
2.3 Directional and partial derivatives
2.4 Chain rule
2.5 Mean Value Theorem
2.6 Gradient
2.7 Higher-order derivatives
2.8 Taylor's formula
2.9 Critical points
2.10¡¡Commuting limit operations
¡¡3 Inverse Function and Implicit Function Theorems
3.1 Diffeomorphisms
3.2 Inverse Function Theorems
3.3 Applications of Inverse Function Theorems
3.4 Implicitly defined mappings
3.5 Implicit Function Theorem
3.6 Applications of the Implicit Function Theorem
3.7 Implicit and Inverse Function Theorems on C
¡¡4 Manifolds
4.1 Introductory remarks
4.2 Manifolds
4.3 Immersion Theorem
4.4 Examples of immersions
4.5 Submersion Theorem
4.6 Examples of submersions
4.7 Equivalent definitions of manifold
4.8 Morse's Lemma
¡¡5 Tangent Spaces
5.1 Definition of tangent space
5.2 Tangent mapping
5.3 Examples of tangent spaces
5.4 Method of Lagrange multipliers
5.5 Applications of the method of multipliers
5.6 Closer investigation of critical points
5.7 Gaussian curvature of surface
5.8 Curvature and torsion of curve in R3
5.9 One-parameter groups and infinitesimal generators
5.10 Linear Lie groups and their Lie algebras
5.11 Transversality
¡¡Exercises
Review Exercises
Exercises for Chapter 1
Exercises lot Chapter 2
Exercises for Chapter 3
Exercises for Chapter 4
Exercises for Chapter 5
¡¡Notation
¡¡Index
Ŀ¼

ͬÀàÈÈÏúͼÊé

ÊéÃû ×÷Õß ³ö°æÉç ¼Û¸ñ ¹ºÂò
¸ßµÈÊýѧ ͬ¼ÃµÚÁù°æ(Éϲá)£¨Ð°棩 ͬ¼Ã´óѧÊý.. ¸ßµÈ½ÌÓý³ö°æÉç

£¤34.40

£¤26.80
ÏêÇé
¸ßµÈÊýѧ ͬ¼ÃµÚÁù°æ(ϲá) ͬ¼Ã´óѧÊý.. ¸ßµÈ½ÌÓý³ö°æÉç

£¤29.40

£¤22.90
ÏêÇé
¸ßµÈÊýѧϰÌâÈ«½âÖ¸ÄÏ Í¬¼ÃµÚ6°æ£¨Éϲᣩ ͬ¼Ã´óѧÊý.. ¸ßµÈ½ÌÓý³ö°æÉç

£¤31.90

£¤23.00
ÏêÇé
¸ßµÈÊýѧ¸¨µ¼ (2012Äê7ÔÂÓ¡Ë¢)£¨Í¬¼Ã¡¢Áù°æ¡¢ÉÏϲáºÏ¶©£©.. Åí»Ô£¬Ò¶ºê.. ɽ¶«¿Æѧ¼¼Êõ³ö°æ..

£¤32.80

£¤21.30
ÏêÇé
µ±´ú½ÌÓýÐÄÀíѧ£¨µÚ¶þ°æ£© ³Âçù£¬ÁõÈå.. ±±¾©Ê¦·¶´óѧ³ö°æ..

£¤53.00

£¤38.20
ÏêÇé
¸ßµÈÊýѧϰÌâÈ«½âÖ¸ÄÏ Í¬¼ÃµÚ6°æ£¨Ï²ᣩ ͬ¼Ã´óѧÊý.. ¸ßµÈ½ÌÓý³ö°æÉç

£¤27.60

£¤19.90
ÏêÇé
»ù´¡Óлú»¯Ñ§ µÚÈý°æ £¨Éϲᣩ£¨Ð°棩 ÐÏÆäÒã¡¡µÈ.. ¸ßµÈ½ÌÓý³ö°æÉç

£¤49.80

£¤38.80
ÏêÇé
»ù´¡Óлú»¯Ñ§ µÚÈý°æ£¨Ï²ᣩ£¨¸½¹âÅÌ£©£¨Ð°棩 ÐÏÆäÒã¡¡µÈ.. ¸ßµÈ½ÌÓý³ö°æÉç

£¤56.50

£¤44.10
ÏêÇé
¸ÅÂÊÂÛÓëÊýÀíͳ¼ÆÏ°ÌâÈ«½âÖ¸ÄÏ Õã´óµÚËÄ°æ Ê¢Ö裬лʽ.. ¸ßµÈ½ÌÓý³ö°æÉç

£¤25.50

£¤18.30
ÏêÇé
ÏßÐÔ´úÊý¸½²á ѧϰ¸¨µ¼ÓëÏ°ÌâÈ«½â ͬ¼ÃµÚÎå°æ ͬ¼Ã´óѧÊý.. ¸ßµÈ½ÌÓý³ö°æÉç

£¤18.90

£¤13.60
ÏêÇé
Ô˳ïѧ£¨µÚÈý°æ£© ¡¶Ô˳ïѧ¡·.. Ç廪´óѧ³ö°æÉç

£¤39.00

£¤31.20
ÏêÇé
·¢Õ¹ÐÄÀíѧ ÁÖ³çµÂ Ö÷.. ÈËÃñ½ÌÓý³ö°æÉç

£¤37.60

£¤30.10
ÏêÇé
΢»ý·Öѧ½Ì³Ì(µÚÒ»¾í)(µÚ8°æ) £¨¶íÂÞ˹£©.. ¸ßµÈ½ÌÓý³ö°æÉç

£¤45.00

£¤36.60
ÏêÇé
½ÌÓýÐÄÀíѧ£¨µÚÊ®°æ£©£¨ÍòǧÐÄÀí£© £¨ÃÀ£©Îé¶û.. ÖйúÇṤҵ³ö°æÉç

£¤68.00

£¤54.40
ÏêÇé
Àí½âÉúÎïÐÅϢѧ Robert F?W.. ¿Æѧ³ö°æÉç

£¤168.00

£¤134.40
ÏêÇé
¡¶Î¢»ý·Ö£¨Éϲᣩ¡·Ñ§Ï°¸¨µ¼ÓëÏ°Ìâ½â´ð£¨¾­¹ÜÀࡤµÚËİ棩.. Îâ¸Ó²ý¡¡Ö÷.. ÖйúÈËÃñ´óѧ³ö°æ..

£¤21.80

£¤17.40
ÏêÇé
»ªÑÐÍâÓ¸ßµÈÊýѧ¸¨µ¼¡¤Ï°ÌâÈ«½â£ºÍ¬¼ÃµÚÁù°æ£¨Í¬¼Ã´óѧ.. ÂíÖ¾Ãô Ö÷.. ÉÇÍ·´óѧ³ö°æÉç

£¤32.80

£¤23.20
ÏêÇé
¸ßµÈÊýѧ¸´Ï°Ö¸µ¼¡ª¡ªË¼Â·¡¢·½·¨Óë¼¼ÇÉ£¨µÚ2°æ£©£¨´óѧÊý.. ³ÂÎĵơ¡Ö÷.. Ç廪´óѧ³ö°æÉç

£¤54.00

£¤40.60
ÏêÇé
¸´±äº¯ÊýÂÛ·½·¨(µÚ6°æ) £¨¶íÂÞ˹£©.. ¸ßµÈ½ÌÓý³ö°æÉç

£¤68.00

£¤54.40
ÏêÇé
΢»ý·Öѧ½Ì³Ì(µÚÈý¾í)(µÚ8°æ) £¨¶íÂÞ˹£©.. ¸ßµÈ½ÌÓý³ö°æÉç

£¤53.00

£¤42.40
ÏêÇé
ÐÇ»ðÁÇÔ­©q(2012Äê7ÔÂÓ¡Ë¢)¸ßµÈÊýѧͬ²½²âÊÔ¾í(ͬ¼ÃÁù°æ).. ÂíµÂ¸ß¡¡Ö÷.. Ñӱߴóѧ³ö°æÉç

£¤12.80

£¤9.40
ÏêÇé
¹âѧԭÀí¡ª¡ª¹âµÄ´«²¥¡¢¸ÉÉæºÍÑÜÉäµÄµç´ÅÀíÂÛ£¨µÚÆ߰棩 £¨µÂ£©²£¶÷.. µç×Ó¹¤Òµ³ö°æÉç

£¤89.00

£¤71.20
ÏêÇé
Éç»áÐÄÀíѧ£¨µÚ¶þ°æ£© ºîÓñ²¨ ±à.. ±±¾©´óѧ³ö°æÉç

£¤28.00

£¤22.40
ÏêÇé
ÐÇ»ðÁÇÔ­©q(2012Äê7ÔÂ)¸ßµÈÊýѧͬ²½¸¨µ¼(Åí»Ôͬ¼ÃÎå°æÉÏÏ.. ÂíµÂ¸ß¡¡±à.. Ñӱߴóѧ³ö°æÉç

£¤32.80

£¤20.50
ÏêÇé
ÊýѧģÐÍ£¨µÚ4°æ£© ½ªÆôÔ´£¬Ð».. ¸ßµÈ½ÌÓý³ö°æÉç

£¤44.00

£¤34.30
ÏêÇé