¶àάʵ·ÖÎö µÚ1¾í
- ËùÊô·ÖÀࣺ
¸ßµÈԺУÀí..
- ×÷Õߣº
£¨ºÉ£©¶Å˹ÌØÂíÌØ Öø
- ³ö°æÉ磺
ÊÀ½çͼÊé³ö°æ¹«Ë¾
- ISBN£º9787510004520
- ³ö°æÈÕÆÚ£º2009-8-1
-
Ô¼Û£º
£¤49.00Ôª
ÏÖ¼Û£º£¤38.30Ôª
ͼÊé¼ò½é
Volume ¢ñ
¡¡Preface
¡¡Acknowledgments
¡¡Introduction
¡¡1 Continuity
¡¡¡¡1.1 Inner product and norm
¡¡¡¡1.2 Open and closed sets
¡¡¡¡1.3 Limits and continuous mappings
¡¡¡¡1.4 Composition of mappings
¡¡¡¡1.5 Homeomorphisms
¡¡¡¡1.6 Completeness
¡¡¡¡1.7 Contractions
¡¡¡¡1.8 Compactness and uniform continuity
¡¡¡¡1.9 Connectedness
¡¡2 Differentiation
¡¡¡¡2.1 Linear mappings
¡¡¡¡2.2 Differentiable mappings
¡¡¡¡2.3 Directional and partial derivatives
¡¡¡¡2.4 Chain rule
¡¡¡¡2.5 Mean Value Theorem
¡¡¡¡2.6 Gradient
¡¡¡¡2.7 Higher-order derivatives
¡¡¡¡2.8 Taylor's formula
¡¡¡¡2.9 Critical points
¡¡¡¡2.10¡¡Commuting limit operations
¡¡3 Inverse Function and Implicit Function Theorems
¡¡¡¡3.1 Diffeomorphisms
¡¡¡¡3.2 Inverse Function Theorems
¡¡¡¡3.3 Applications oflnverse Function Theorems
¡¡¡¡3.4 Implicitly defined mappings
¡¡¡¡3.5 Implicit Function Theorem
¡¡ 3.6 Applications of the Implicit Function Theorem
¡¡¡¡3.7 Implicit and Inverse Function Theorems on C
¡¡4 Manifolds
¡¡¡¡4.1 Introductory remarks
¡¡¡¡4.2 Manifolds
¡¡¡¡4.3 Immersion Theorem
¡¡¡¡4.4 Examples of immersions
¡¡¡¡4.5 Submersion Theorem
¡¡¡¡4.6 Examples of submersions
¡¡¡¡4.7 Equivalent definitions of manifold
¡¡¡¡4.8 Morse's Lemma
¡¡5¡¡Tangent Spaces
¡¡¡¡5.1 Definition of tangent space
¡¡¡¡5.2 Tangent mapping
¡¡¡¡5.3 Examples of tangent spaces
¡¡¡¡5.4 Method of Lagrange multipliers
¡¡¡¡5.5 Applications of the method of multipliers
¡¡¡¡5.6 Closer investigation of critical points
¡¡¡¡5.7 Gaussian curvature of surface
¡¡¡¡5.8 Curvature and torsion of curve in R3
¡¡¡¡5.9 One-parameter groups and infinitesimal generators
¡¡¡¡5.10 Linear Lie groups and their Lie algebras
¡¡¡¡5.11 Transversality
¡¡Exercises
¡¡¡¡Review Exercises
¡¡¡¡Exercises for Chapter 1
¡¡¡¡Exercises for Chapter 2
¡¡¡¡Exercises for Chapter 3
¡¡¡¡Exercises for Chapter 4
¡¡¡¡Exercises for Chapter 5
¡¡Notation
¡¡Index
Volume ¢ò
¡¡Preface
¡¡Acknowledgments
¡¡Introduction
¡¡6¡¡Integration
¡¡¡¡6.1 Rectangles
¡¡¡¡6.2 Riemann integrability
¡¡¡¡6.3¡¡Jordan measurability
¡¡6.4 Successive integration
¡¡ 6.5 Examples of successive integration
¡¡6.6 Change of Variables Theorem: formulation and examples
¡¡¡¡6.7 Partitions of unity
¡¡¡¡6.8 Approximation of Riemann integrable functions
¡¡¡¡6.9 Proof of Change of Variables Theorem
¡¡¡¡6.10 Absolute Riemann integrability
¡¡¡¡6.11 Application of integration: Fourier transformation
¡¡¡¡6.12 Dominated convergence
¡¡¡¡6.13 Appendix: two other proofs of Change of Variables Theorem
¡¡7 Integration over Submanifolds
¡¡¡¡7.1 Densities and integration with respect to density
¡¡¡¡7.2 Absolute Riemann integrability with respect to density
¡¡¡¡7.3 Euclidean d-dimensional density
¡¡¡¡7.4 Examples of Euclidean densities
¡¡¡¡7.5 Open sets at one side of their boundary
¡¡¡¡7.6 Integration of a total derivative
¡¡¡¡7.7 Generalizations of the preceding theorem
¡¡¡¡7.8 Gauss' Divergence Theorem
¡¡¡¡7.9 Applications of Gauss' Divergence Theorem
¡¡8 Oriented Integration
¡¡¡¡8.1 Line integrals and properties of vector fields
¡¡¡¡8.2 Antidifferentiation
¡¡¡¡8.3 Green's and Cauchy's Integral Theorems
¡¡¡¡8.4 Stokes' Integral Theorem
¡¡¡¡8.5 Applications of Stokes' Integral Theorem
¡¡¡¡8.6 Apotheosis: differential forms and Stokes' Theorem .
¡¡¡¡8.7 Properties of differential forms
¡¡¡¡8.8 Applications of differential forms
¡¡¡¡8.9 Homotopy Lemma
¡¡¡¡8.10 Poincare's Lemma
¡¡¡¡8.11 Degree of mapping
¡¡Exercises
¡¡¡¡Exercises for Chapter 6
¡¡¡¡Exercises for Chapter 7
¡¡¡¡Exercises for Chapter 8
¡¡Notation
¡¡Index
Ŀ¼
ͬÀàÈÈÏúͼÊé
ÊéÃû | ×÷Õß | ³ö°æÉç | ¼Û¸ñ | ¹ºÂò |
¸ßµÈÊýѧ ͬ¼ÃµÚÁù°æ(Éϲá)£¨Ð°棩 | ͬ¼Ã´óѧÊý.. | ¸ßµÈ½ÌÓý³ö°æÉç | £¤34.40£¤26.80 |
ÏêÇé |
¸ßµÈÊýѧ ͬ¼ÃµÚÁù°æ(ϲá) | ͬ¼Ã´óѧÊý.. | ¸ßµÈ½ÌÓý³ö°æÉç | £¤29.40£¤22.90 |
ÏêÇé |
¸ßµÈÊýѧϰÌâÈ«½âÖ¸ÄÏ Í¬¼ÃµÚ6°æ£¨Éϲᣩ | ͬ¼Ã´óѧÊý.. | ¸ßµÈ½ÌÓý³ö°æÉç | £¤31.90£¤23.00 |
ÏêÇé |
¸ßµÈÊýѧ¸¨µ¼ (2012Äê7ÔÂÓ¡Ë¢)£¨Í¬¼Ã¡¢Áù°æ¡¢ÉÏϲáºÏ¶©£©.. | Åí»Ô£¬Ò¶ºê.. | ɽ¶«¿Æѧ¼¼Êõ³ö°æ.. | £¤32.80£¤21.30 |
ÏêÇé |
µ±´ú½ÌÓýÐÄÀíѧ£¨µÚ¶þ°æ£© | ³Âçù£¬ÁõÈå.. | ±±¾©Ê¦·¶´óѧ³ö°æ.. | £¤53.00£¤38.20 |
ÏêÇé |
¸ßµÈÊýѧϰÌâÈ«½âÖ¸ÄÏ Í¬¼ÃµÚ6°æ£¨Ï²ᣩ | ͬ¼Ã´óѧÊý.. | ¸ßµÈ½ÌÓý³ö°æÉç | £¤27.60£¤19.90 |
ÏêÇé |
»ù´¡Óлú»¯Ñ§ µÚÈý°æ £¨Éϲᣩ£¨Ð°棩 | ÐÏÆäÒã¡¡µÈ.. | ¸ßµÈ½ÌÓý³ö°æÉç | £¤49.80£¤38.80 |
ÏêÇé |
»ù´¡Óлú»¯Ñ§ µÚÈý°æ£¨Ï²ᣩ£¨¸½¹âÅÌ£©£¨Ð°棩 | ÐÏÆäÒã¡¡µÈ.. | ¸ßµÈ½ÌÓý³ö°æÉç | £¤56.50£¤44.10 |
ÏêÇé |
¸ÅÂÊÂÛÓëÊýÀíͳ¼ÆÏ°ÌâÈ«½âÖ¸ÄÏ Õã´óµÚËÄ°æ | Ê¢Ö裬лʽ.. | ¸ßµÈ½ÌÓý³ö°æÉç | £¤25.50£¤18.30 |
ÏêÇé |
ÏßÐÔ´úÊý¸½²á ѧϰ¸¨µ¼ÓëÏ°ÌâÈ«½â ͬ¼ÃµÚÎå°æ | ͬ¼Ã´óѧÊý.. | ¸ßµÈ½ÌÓý³ö°æÉç | £¤18.90£¤13.60 |
ÏêÇé |
Ô˳ïѧ£¨µÚÈý°æ£© | ¡¶Ô˳ïѧ¡·.. | Ç廪´óѧ³ö°æÉç | £¤39.00£¤31.20 |
ÏêÇé |
·¢Õ¹ÐÄÀíѧ | ÁÖ³çµÂ Ö÷.. | ÈËÃñ½ÌÓý³ö°æÉç | £¤37.60£¤30.10 |
ÏêÇé |
΢»ý·Öѧ½Ì³Ì(µÚÒ»¾í)(µÚ8°æ) | £¨¶íÂÞ˹£©.. | ¸ßµÈ½ÌÓý³ö°æÉç | £¤45.00£¤36.60 |
ÏêÇé |
½ÌÓýÐÄÀíѧ£¨µÚÊ®°æ£©£¨ÍòǧÐÄÀí£© | £¨ÃÀ£©Îé¶û.. | ÖйúÇṤҵ³ö°æÉç | £¤68.00£¤54.40 |
ÏêÇé |
Àí½âÉúÎïÐÅϢѧ | Robert F?W.. | ¿Æѧ³ö°æÉç | £¤168.00£¤134.40 |
ÏêÇé |
¡¶Î¢»ý·Ö£¨Éϲᣩ¡·Ñ§Ï°¸¨µ¼ÓëÏ°Ìâ½â´ð£¨¾¹ÜÀࡤµÚËİ棩.. | Îâ¸Ó²ý¡¡Ö÷.. | ÖйúÈËÃñ´óѧ³ö°æ.. | £¤21.80£¤17.40 |
ÏêÇé |
»ªÑÐÍâÓ¸ßµÈÊýѧ¸¨µ¼¡¤Ï°ÌâÈ«½â£ºÍ¬¼ÃµÚÁù°æ£¨Í¬¼Ã´óѧ.. | ÂíÖ¾Ãô Ö÷.. | ÉÇÍ·´óѧ³ö°æÉç | £¤32.80£¤23.20 |
ÏêÇé |
¸ßµÈÊýѧ¸´Ï°Ö¸µ¼¡ª¡ªË¼Â·¡¢·½·¨Óë¼¼ÇÉ£¨µÚ2°æ£©£¨´óѧÊý.. | ³ÂÎĵơ¡Ö÷.. | Ç廪´óѧ³ö°æÉç | £¤54.00£¤40.60 |
ÏêÇé |
¸´±äº¯ÊýÂÛ·½·¨(µÚ6°æ) | £¨¶íÂÞ˹£©.. | ¸ßµÈ½ÌÓý³ö°æÉç | £¤68.00£¤54.40 |
ÏêÇé |
΢»ý·Öѧ½Ì³Ì(µÚÈý¾í)(µÚ8°æ) | £¨¶íÂÞ˹£©.. | ¸ßµÈ½ÌÓý³ö°æÉç | £¤53.00£¤42.40 |
ÏêÇé |
ÐÇ»ðÁÇÔ©q(2012Äê7ÔÂÓ¡Ë¢)¸ßµÈÊýѧͬ²½²âÊÔ¾í(ͬ¼ÃÁù°æ).. | ÂíµÂ¸ß¡¡Ö÷.. | Ñӱߴóѧ³ö°æÉç | £¤12.80£¤9.40 |
ÏêÇé |
¹âѧÔÀí¡ª¡ª¹âµÄ´«²¥¡¢¸ÉÉæºÍÑÜÉäµÄµç´ÅÀíÂÛ£¨µÚÆ߰棩 | £¨µÂ£©²£¶÷.. | µç×Ó¹¤Òµ³ö°æÉç | £¤89.00£¤71.20 |
ÏêÇé |
Éç»áÐÄÀíѧ£¨µÚ¶þ°æ£© | ºîÓñ²¨ ±à.. | ±±¾©´óѧ³ö°æÉç | £¤28.00£¤22.40 |
ÏêÇé |
ÐÇ»ðÁÇÔ©q(2012Äê7ÔÂ)¸ßµÈÊýѧͬ²½¸¨µ¼(Åí»Ôͬ¼ÃÎå°æÉÏÏ.. | ÂíµÂ¸ß¡¡±à.. | Ñӱߴóѧ³ö°æÉç | £¤32.80£¤20.50 |
ÏêÇé |
ÊýѧģÐÍ£¨µÚ4°æ£© | ½ªÆôÔ´£¬Ð».. | ¸ßµÈ½ÌÓý³ö°æÉç | £¤44.00£¤34.30 |
ÏêÇé |