΢·Ö¼¸ºÎ»ù´¡

  • ËùÊô·ÖÀࣺ
    ¸ßµÈԺУÀí..
  • ×÷Õߣº
    £¨ÃÀ£©ÀÊ Öø
  • ³ö°æÉ磺
    ÊÀ½çͼÊé³ö°æ¹«Ë¾
  • ISBN£º9787510005404
  • ³ö°æÈÕÆÚ£º2010-1-1
  • Ô­¼Û£º
    £¤65.00Ôª
    ÏÖ¼Û£º£¤52.00Ôª
  • ±¾ÊéÐÅÏ¢ÓɺÏ×÷ÍøÕ¾Ìṩ£¬ÇëÇ°ÍùÒÔÏÂÍøÕ¾¹ºÂò£º

    ¾©¶«É̳Ç

    ¡¡

    µ±µ±Íø

ͼÊé¼ò½é

±¾Êé½éÉÜÁË΢·ÖÍØÆË¡¢Î¢·Ö¼¸ºÎÒÔ¼°Î¢·Ö·½³ÌµÄ»ù±¾¸ÅÄî¡£±¾ÊéµÄ»ù±¾Ë¼ÏëÔ´ÓÚ×÷ÕßÔçÆڵġ¶Î¢·ÖºÍÀèÂüÁ÷ÐΡ·£¬µ«ÖصãÈ´´ÓÁ÷ÐεÄÒ»°ãÀíÂÛתÒƵ½Î¢·Ö¼¸ºÎ£¬Ôö¼ÓÁ˲»ÉÙеÄÕ½ڡ£ÕâЩеÄ֪ʶΪBanachºÍHilbert¿Õ¼äÉϵÄÎÞÏÞάÁ÷ÐÎ×ö×¼±¸£¬µ«Ò»µã¶¼²»¾õµÃ¶àÓ࣬¶øÓÅÃÀµÄÖ¤Ã÷Ò²ÈöÁÕßÊÜÒ治dz¡£ÔÚÓÐÏÞάµÄÀý×ÓÖУ¬ÌÖÂÛÁ˸ßά΢·ÖÐÎʽ£¬¼Ì¶ø½éÉÜÁËStokes¶¨ÀíºÍһЩÔÚ΢·ÖºÍÀèÂüÇéÐÎϵÄÓ¦Ó᣸ø³öÁËLaplacian»ù±¾¹«Ê½£¬Õ¹Ê¾ÁËÆäÔÚ½þÈëºÍ½þûÖеÄÌØÕ÷¡£ÊéÖн²ÊöÁ˸ÃÁìÓòµÄһЩÖ÷Òª»ù±¾ÀíÂÛ£¬È磺΢·Ö·½³ÌµÄ´æÔÚ¶¨Àí¡¢Î¨Ò»ÐÔ¡¢¹â»¬¶¨ÀíºÍÏòÁ¿ÓòÁ÷£¬°üÀ¨×ÓÁ÷ÐιÜ×´ÁÚÓòµÄ´æÔÚÐÔµÄÏòÁ¿´Ô»ù±¾ÀíÂÛ£¬Î¢»ý·ÖÐÎʽ£¬°üÀ¨¾­µä2-ÐÎʽµÄÐÁÁ÷Ðλù±¾¹Ûµã£¬ÀèÂüºÍαÀèÂüÁ÷ÐÎЭ±äµ¼ÊýÒÔ¼°ÆäÔÚÖ¸ÊýÓ³ÉäÖеÄÓ¦Óã¬Cartan-Hadamard¶¨ÀíºÍ±ä·Ö΢»ý·ÖµÚÒ»»ù±¾¶¨Àí¡£Ä¿´Î£º£¨µÚÒ»²¿·Ö£©Ò»°ã΢·Ö·½³Ì£»Î¢»ý·Ö£»Á÷ÐΣ»ÏòÁ¿´Ô£»ÏòÁ¿ÓòºÍ΢·Ö·½³Ì£»ÏòÁ¿ÓòºÍ΢·ÖÐÎʽÔËË㣻Frobenius¶¨Àí£»£¨µÚ¶þ²¿·Ö£©¾ØÕó¡¢Ð­±äµ¼ÊýºÍÀèÂü¼¸ºÎ£º¾ØÕó£»Ð­±äµ¼ÊýºÍ²âµØÏߣ»ÇúÂÊ£»¶þÖØÇÐÏß´ÔµÄÕÅÁ¿·ÖÁÑ£»ÇúÂʺͱä·Ö¹«Ê½£»°ë¸ºÇúÂÊÀý×Ó£»×Ôͬ¹¹ºÍ¶Ô³Æ£»½þÈëºÍ½þû£»£¨µÚÈý²¿·Ö£©Ìå»ýÐÎʽºÍ»ý·Ö£ºÌå»ýÐÎʽ£»Î¢·ÖÐÎʽµÄ»ý·Ö£»Stokes¶¨Àí£»Stokes¶¨ÀíµÄÓ¦Óã»Æ×ÀíÂÛ¡£
Ŀ¼
Foreword
Acknowledgments
PART ¢ñ General Differential Theory
¡¡CHAPTER ¢ò Differential Calculus
¡¡¡¡1.Categories
¡¡¡¡2.Topological Vector Spaces
¡¡¡¡3.Derivatives and Composition of Maps
¡¡¡¡4.Integration and Taylor's Formula
¡¡¡¡5.The Inverse Mapping Theorem
¡¡CHAPTER ¢ò Manifolds
¡¡¡¡1.Atlases, Charts, Morphisms
¡¡¡¡2.Submanifolds, Immersions, Submersions
¡¡¡¡3.Partitions of Unity
¡¡¡¡4.Manifolds with Boundary
¡¡CHAPTER ¢ó Vector Bundles
¡¡¡¡1.Definition, Pull Backs
¡¡¡¡2.The Tangent Bundle
¡¡¡¡3.Exact Sequences of Bundles
¡¡¡¡4.Operations on Vector Bundles
¡¡¡¡5.Splitting of Vector Bundles
¡¡CHAPTER ¢ô Vector Fields and Differential Equations
¡¡¡¡1.Existence Theorem for Differential Equations
¡¡¡¡2.Vector Fields, Curves, and Flows
¡¡¡¡3.Sprays
¡¡¡¡4.The Flow of a Spray and the Exponential Map
¡¡¡¡5.Existence of Tubular Neighborhoods
¡¡¡¡6.Uniqueness of Tubular Neighborhoods
¡¡CHAPTER ¢õ Operations on Vector Fields and Differential Forms
¡¡¡¡1.Vector Fields, Differential Operators, Brackets
¡¡¡¡2.Lie Derivative
¡¡¡¡3.Exterior Derivative
¡¡¡¡4.The Poincare Lemma.
¡¡¡¡5.Contractions and Lie Derivative
¡¡¡¡6.Vector Fields and l-Forms Under Self Duality
¡¡¡¡7.The Canonical 2-Form
¡¡¡¡8.Darboux's Theorem
¡¡CHAPTER ¢ö The Theorem ol Frobenius
¡¡¡¡1.Statement of the Theorem
¡¡¡¡2.Differential Equations Depending on a Parameter
¡¡¡¡3.Proof of the Theorem
¡¡¡¡4.The Global Formulation
¡¡¡¡5.Lie Groups and Subgroups
PART ¢ò Metrics, Covariant Derivatives, and Riemannian Geometry
¡¡CHAPTER ¢÷ Metrics
¡¡¡¡1.Definition and Functoriality
¡¡¡¡2.The Hilbert Group
¡¡¡¡3.Reduction to the Hiibert Group
¡¡¡¡4.Hilbertian Tubular Neighborhoods
¡¡¡¡5.The Morse-Palais Lemma
¡¡¡¡6.The Riemannian Distance
¡¡¡¡7.The Canonical Spray
¡¡CHAPTER ¢ø Covarlent Derivatives and Geodesics
¡¡¡¡1.Basic Properties
¡¡¡¡2.Sprays and Covariant Derivatives
¡¡¡¡3.Derivative Along a Curve and Parallelism
¡¡¡¡4.The Metric Derivative
¡¡¡¡5.More Local Results on the Exponential Map
¡¡¡¡6.Riemannian Geodesic Length and Completeness
¡¡CHAPTER ¢ù curvature
¡¡¡¡1.The Riemann Tensor
¡¡¡¡2.Jacobi Lifts.
¡¡¡¡3.Application of Jacobi Lifts to Texp
¡¡¡¡4.Convexity Theorems.
¡¡¡¡5.Taylor Expansions
PART ¢ó Volume Forms and Integration
Index

ͬÀàÈÈÏúͼÊé

ÊéÃû ×÷Õß ³ö°æÉç ¼Û¸ñ ¹ºÂò
¸ßµÈÊýѧ ͬ¼ÃµÚÁù°æ(Éϲá)£¨Ð°棩 ͬ¼Ã´óѧÊý.. ¸ßµÈ½ÌÓý³ö°æÉç

£¤34.40

£¤26.80
ÏêÇé
¸ßµÈÊýѧ ͬ¼ÃµÚÁù°æ(ϲá) ͬ¼Ã´óѧÊý.. ¸ßµÈ½ÌÓý³ö°æÉç

£¤29.40

£¤22.90
ÏêÇé
¸ßµÈÊýѧϰÌâÈ«½âÖ¸ÄÏ Í¬¼ÃµÚ6°æ£¨Éϲᣩ ͬ¼Ã´óѧÊý.. ¸ßµÈ½ÌÓý³ö°æÉç

£¤31.90

£¤23.00
ÏêÇé
¸ßµÈÊýѧ¸¨µ¼ (2012Äê7ÔÂÓ¡Ë¢)£¨Í¬¼Ã¡¢Áù°æ¡¢ÉÏϲáºÏ¶©£©.. Åí»Ô£¬Ò¶ºê.. ɽ¶«¿Æѧ¼¼Êõ³ö°æ..

£¤32.80

£¤21.30
ÏêÇé
µ±´ú½ÌÓýÐÄÀíѧ£¨µÚ¶þ°æ£© ³Âçù£¬ÁõÈå.. ±±¾©Ê¦·¶´óѧ³ö°æ..

£¤53.00

£¤38.20
ÏêÇé
¸ßµÈÊýѧϰÌâÈ«½âÖ¸ÄÏ Í¬¼ÃµÚ6°æ£¨Ï²ᣩ ͬ¼Ã´óѧÊý.. ¸ßµÈ½ÌÓý³ö°æÉç

£¤27.60

£¤19.90
ÏêÇé
»ù´¡Óлú»¯Ñ§ µÚÈý°æ £¨Éϲᣩ£¨Ð°棩 ÐÏÆäÒã¡¡µÈ.. ¸ßµÈ½ÌÓý³ö°æÉç

£¤49.80

£¤38.80
ÏêÇé
»ù´¡Óлú»¯Ñ§ µÚÈý°æ£¨Ï²ᣩ£¨¸½¹âÅÌ£©£¨Ð°棩 ÐÏÆäÒã¡¡µÈ.. ¸ßµÈ½ÌÓý³ö°æÉç

£¤56.50

£¤44.10
ÏêÇé
¸ÅÂÊÂÛÓëÊýÀíͳ¼ÆÏ°ÌâÈ«½âÖ¸ÄÏ Õã´óµÚËÄ°æ Ê¢Ö裬лʽ.. ¸ßµÈ½ÌÓý³ö°æÉç

£¤25.50

£¤18.30
ÏêÇé
ÏßÐÔ´úÊý¸½²á ѧϰ¸¨µ¼ÓëÏ°ÌâÈ«½â ͬ¼ÃµÚÎå°æ ͬ¼Ã´óѧÊý.. ¸ßµÈ½ÌÓý³ö°æÉç

£¤18.90

£¤13.60
ÏêÇé
Ô˳ïѧ£¨µÚÈý°æ£© ¡¶Ô˳ïѧ¡·.. Ç廪´óѧ³ö°æÉç

£¤39.00

£¤31.20
ÏêÇé
·¢Õ¹ÐÄÀíѧ ÁÖ³çµÂ Ö÷.. ÈËÃñ½ÌÓý³ö°æÉç

£¤37.60

£¤30.10
ÏêÇé
΢»ý·Öѧ½Ì³Ì(µÚÒ»¾í)(µÚ8°æ) £¨¶íÂÞ˹£©.. ¸ßµÈ½ÌÓý³ö°æÉç

£¤45.00

£¤36.60
ÏêÇé
½ÌÓýÐÄÀíѧ£¨µÚÊ®°æ£©£¨ÍòǧÐÄÀí£© £¨ÃÀ£©Îé¶û.. ÖйúÇṤҵ³ö°æÉç

£¤68.00

£¤54.40
ÏêÇé
Àí½âÉúÎïÐÅϢѧ Robert F?W.. ¿Æѧ³ö°æÉç

£¤168.00

£¤134.40
ÏêÇé
¡¶Î¢»ý·Ö£¨Éϲᣩ¡·Ñ§Ï°¸¨µ¼ÓëÏ°Ìâ½â´ð£¨¾­¹ÜÀࡤµÚËİ棩.. Îâ¸Ó²ý¡¡Ö÷.. ÖйúÈËÃñ´óѧ³ö°æ..

£¤21.80

£¤17.40
ÏêÇé
»ªÑÐÍâÓ¸ßµÈÊýѧ¸¨µ¼¡¤Ï°ÌâÈ«½â£ºÍ¬¼ÃµÚÁù°æ£¨Í¬¼Ã´óѧ.. ÂíÖ¾Ãô Ö÷.. ÉÇÍ·´óѧ³ö°æÉç

£¤32.80

£¤23.20
ÏêÇé
¸ßµÈÊýѧ¸´Ï°Ö¸µ¼¡ª¡ªË¼Â·¡¢·½·¨Óë¼¼ÇÉ£¨µÚ2°æ£©£¨´óѧÊý.. ³ÂÎĵơ¡Ö÷.. Ç廪´óѧ³ö°æÉç

£¤54.00

£¤40.60
ÏêÇé
¸´±äº¯ÊýÂÛ·½·¨(µÚ6°æ) £¨¶íÂÞ˹£©.. ¸ßµÈ½ÌÓý³ö°æÉç

£¤68.00

£¤54.40
ÏêÇé
΢»ý·Öѧ½Ì³Ì(µÚÈý¾í)(µÚ8°æ) £¨¶íÂÞ˹£©.. ¸ßµÈ½ÌÓý³ö°æÉç

£¤53.00

£¤42.40
ÏêÇé
ÐÇ»ðÁÇÔ­©q(2012Äê7ÔÂÓ¡Ë¢)¸ßµÈÊýѧͬ²½²âÊÔ¾í(ͬ¼ÃÁù°æ).. ÂíµÂ¸ß¡¡Ö÷.. Ñӱߴóѧ³ö°æÉç

£¤12.80

£¤9.40
ÏêÇé
¹âѧԭÀí¡ª¡ª¹âµÄ´«²¥¡¢¸ÉÉæºÍÑÜÉäµÄµç´ÅÀíÂÛ£¨µÚÆ߰棩 £¨µÂ£©²£¶÷.. µç×Ó¹¤Òµ³ö°æÉç

£¤89.00

£¤71.20
ÏêÇé
Éç»áÐÄÀíѧ£¨µÚ¶þ°æ£© ºîÓñ²¨ ±à.. ±±¾©´óѧ³ö°æÉç

£¤28.00

£¤22.40
ÏêÇé
ÐÇ»ðÁÇÔ­©q(2012Äê7ÔÂ)¸ßµÈÊýѧͬ²½¸¨µ¼(Åí»Ôͬ¼ÃÎå°æÉÏÏ.. ÂíµÂ¸ß¡¡±à.. Ñӱߴóѧ³ö°æÉç

£¤32.80

£¤20.50
ÏêÇé
ÊýѧģÐÍ£¨µÚ4°æ£© ½ªÆôÔ´£¬Ð».. ¸ßµÈ½ÌÓý³ö°æÉç

£¤44.00

£¤34.30
ÏêÇé